OrcaSlicer/src/libslic3r/SLA/Rotfinder.cpp
2021-04-07 12:51:02 +02:00

159 lines
4.9 KiB
C++

#include <limits>
#include <libslic3r/SLA/Rotfinder.hpp>
#include <libslic3r/Execution/ExecutionTBB.hpp>
#include <libslic3r/Execution/ExecutionSeq.hpp>
#include <libslic3r/Optimize/BruteforceOptimizer.hpp>
#include "libslic3r/SLAPrint.hpp"
#include "libslic3r/PrintConfig.hpp"
#include <libslic3r/Geometry.hpp>
#include "Model.hpp"
#include <thread>
#include <libnest2d/tools/benchmark.h>
namespace Slic3r { namespace sla {
namespace {
// Get the vertices of a triangle directly in an array of 3 points
std::array<Vec3f, 3> get_triangle_vertices(const TriangleMesh &mesh,
size_t faceidx)
{
const auto &face = mesh.its.indices[faceidx];
return {mesh.its.vertices[face(0)],
mesh.its.vertices[face(1)],
mesh.its.vertices[face(2)]};
}
std::array<Vec3f, 3> get_transformed_triangle(const TriangleMesh &mesh,
const Transform3f & tr,
size_t faceidx)
{
const auto &tri = get_triangle_vertices(mesh, faceidx);
return {tr * tri[0], tr * tri[1], tr * tri[2]};
}
template<class T> Vec<3, T> normal(const std::array<Vec<3, T>, 3> &tri)
{
Vec<3, T> U = tri[1] - tri[0];
Vec<3, T> V = tri[2] - tri[0];
return U.cross(V).normalized();
}
template<class T, class AccessFn>
T sum_score(AccessFn &&accessfn, size_t facecount, size_t Nthreads)
{
T initv = 0.;
auto mergefn = [](T a, T b) { return a + b; };
size_t grainsize = facecount / Nthreads;
size_t from = 0, to = facecount;
return execution::reduce(ex_seq, from, to, initv, mergefn, accessfn, grainsize);
}
// Try to guess the number of support points needed to support a mesh
double get_model_supportedness(const TriangleMesh &mesh, const Transform3f &tr)
{
if (mesh.its.vertices.empty()) return std::nan("");
auto accessfn = [&mesh, &tr](size_t fi) {
Vec3f n = normal(get_transformed_triangle(mesh, tr, fi));
// We should score against the alignment with the reference planes
return scaled<int_fast64_t>(std::abs(n.dot(Vec3f::UnitX())) +
std::abs(n.dot(Vec3f::UnitY())) +
std::abs(n.dot(Vec3f::UnitZ())));
};
size_t facecount = mesh.its.indices.size();
size_t Nthreads = std::thread::hardware_concurrency();
double S = unscaled(sum_score<int_fast64_t>(accessfn, facecount, Nthreads));
return S / facecount;
}
using XYRotation = std::array<double, 2>;
// prepare the rotation transformation
Transform3f to_transform3f(const XYRotation &rot)
{
Transform3f rt = Transform3f::Identity();
rt.rotate(Eigen::AngleAxisf(float(rot[1]), Vec3f::UnitY()));
rt.rotate(Eigen::AngleAxisf(float(rot[0]), Vec3f::UnitX()));
return rt;
}
} // namespace
Vec2d find_best_misalignment_rotation(const SLAPrintObject & po,
float accuracy,
std::function<bool(int)> statuscb)
{
static const unsigned MAX_TRIES = 1000;
// return value
XYRotation rot;
// We will use only one instance of this converted mesh to examine different
// rotations
TriangleMesh mesh = po.model_object()->raw_mesh();
mesh.require_shared_vertices();
// To keep track of the number of iterations
int status = 0;
// The maximum number of iterations
auto max_tries = unsigned(accuracy * MAX_TRIES);
// call status callback with zero, because we are at the start
statuscb(status);
auto statusfn = [&statuscb, &status, &max_tries] {
// report status
statuscb(++status * 100.0/max_tries);
};
auto stopcond = [&statuscb] {
return ! statuscb(-1);
};
// Preparing the optimizer.
size_t gridsize = std::sqrt(max_tries);
opt::Optimizer<opt::AlgBruteForce> solver(opt::StopCriteria{}
.max_iterations(max_tries)
.stop_condition(stopcond),
gridsize);
// We are searching rotations around only two axes x, y. Thus the
// problem becomes a 2 dimensional optimization task.
// We can specify the bounds for a dimension in the following way:
auto bounds = opt::bounds({ {-PI/2, PI/2}, {-PI/2, PI/2} });
Benchmark bench;
bench.start();
auto result = solver.to_max().optimize(
[&mesh, &statusfn] (const XYRotation &rot)
{
statusfn();
return get_model_supportedness(mesh, to_transform3f(rot));
}, opt::initvals({0., 0.}), bounds);
bench.stop();
rot = result.optimum;
std::cout << "Optimum score: " << result.score << std::endl;
std::cout << "Optimum rotation: " << result.optimum[0] << " " << result.optimum[1] << std::endl;
std::cout << "Optimization took: " << bench.getElapsedSec() << " seconds" << std::endl;
return {rot[0], rot[1]};
}
}} // namespace Slic3r::sla