mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2026-02-20 19:42:21 -07:00
159 lines
4.9 KiB
C++
159 lines
4.9 KiB
C++
#include <limits>
|
|
|
|
#include <libslic3r/SLA/Rotfinder.hpp>
|
|
|
|
#include <libslic3r/Execution/ExecutionTBB.hpp>
|
|
#include <libslic3r/Execution/ExecutionSeq.hpp>
|
|
|
|
#include <libslic3r/Optimize/BruteforceOptimizer.hpp>
|
|
|
|
#include "libslic3r/SLAPrint.hpp"
|
|
#include "libslic3r/PrintConfig.hpp"
|
|
|
|
#include <libslic3r/Geometry.hpp>
|
|
#include "Model.hpp"
|
|
|
|
#include <thread>
|
|
|
|
#include <libnest2d/tools/benchmark.h>
|
|
|
|
namespace Slic3r { namespace sla {
|
|
|
|
namespace {
|
|
|
|
// Get the vertices of a triangle directly in an array of 3 points
|
|
std::array<Vec3f, 3> get_triangle_vertices(const TriangleMesh &mesh,
|
|
size_t faceidx)
|
|
{
|
|
const auto &face = mesh.its.indices[faceidx];
|
|
return {mesh.its.vertices[face(0)],
|
|
mesh.its.vertices[face(1)],
|
|
mesh.its.vertices[face(2)]};
|
|
}
|
|
|
|
std::array<Vec3f, 3> get_transformed_triangle(const TriangleMesh &mesh,
|
|
const Transform3f & tr,
|
|
size_t faceidx)
|
|
{
|
|
const auto &tri = get_triangle_vertices(mesh, faceidx);
|
|
return {tr * tri[0], tr * tri[1], tr * tri[2]};
|
|
}
|
|
|
|
template<class T> Vec<3, T> normal(const std::array<Vec<3, T>, 3> &tri)
|
|
{
|
|
Vec<3, T> U = tri[1] - tri[0];
|
|
Vec<3, T> V = tri[2] - tri[0];
|
|
return U.cross(V).normalized();
|
|
}
|
|
|
|
template<class T, class AccessFn>
|
|
T sum_score(AccessFn &&accessfn, size_t facecount, size_t Nthreads)
|
|
{
|
|
T initv = 0.;
|
|
auto mergefn = [](T a, T b) { return a + b; };
|
|
size_t grainsize = facecount / Nthreads;
|
|
size_t from = 0, to = facecount;
|
|
|
|
return execution::reduce(ex_seq, from, to, initv, mergefn, accessfn, grainsize);
|
|
}
|
|
|
|
// Try to guess the number of support points needed to support a mesh
|
|
double get_model_supportedness(const TriangleMesh &mesh, const Transform3f &tr)
|
|
{
|
|
if (mesh.its.vertices.empty()) return std::nan("");
|
|
|
|
auto accessfn = [&mesh, &tr](size_t fi) {
|
|
Vec3f n = normal(get_transformed_triangle(mesh, tr, fi));
|
|
|
|
// We should score against the alignment with the reference planes
|
|
return scaled<int_fast64_t>(std::abs(n.dot(Vec3f::UnitX())) +
|
|
std::abs(n.dot(Vec3f::UnitY())) +
|
|
std::abs(n.dot(Vec3f::UnitZ())));
|
|
};
|
|
|
|
size_t facecount = mesh.its.indices.size();
|
|
size_t Nthreads = std::thread::hardware_concurrency();
|
|
double S = unscaled(sum_score<int_fast64_t>(accessfn, facecount, Nthreads));
|
|
|
|
return S / facecount;
|
|
}
|
|
|
|
using XYRotation = std::array<double, 2>;
|
|
|
|
// prepare the rotation transformation
|
|
Transform3f to_transform3f(const XYRotation &rot)
|
|
{
|
|
Transform3f rt = Transform3f::Identity();
|
|
rt.rotate(Eigen::AngleAxisf(float(rot[1]), Vec3f::UnitY()));
|
|
rt.rotate(Eigen::AngleAxisf(float(rot[0]), Vec3f::UnitX()));
|
|
|
|
return rt;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
Vec2d find_best_misalignment_rotation(const SLAPrintObject & po,
|
|
float accuracy,
|
|
std::function<bool(int)> statuscb)
|
|
{
|
|
static const unsigned MAX_TRIES = 1000;
|
|
|
|
// return value
|
|
XYRotation rot;
|
|
|
|
// We will use only one instance of this converted mesh to examine different
|
|
// rotations
|
|
TriangleMesh mesh = po.model_object()->raw_mesh();
|
|
mesh.require_shared_vertices();
|
|
|
|
// To keep track of the number of iterations
|
|
int status = 0;
|
|
|
|
// The maximum number of iterations
|
|
auto max_tries = unsigned(accuracy * MAX_TRIES);
|
|
|
|
// call status callback with zero, because we are at the start
|
|
statuscb(status);
|
|
|
|
auto statusfn = [&statuscb, &status, &max_tries] {
|
|
// report status
|
|
statuscb(++status * 100.0/max_tries);
|
|
};
|
|
|
|
auto stopcond = [&statuscb] {
|
|
return ! statuscb(-1);
|
|
};
|
|
|
|
// Preparing the optimizer.
|
|
size_t gridsize = std::sqrt(max_tries);
|
|
opt::Optimizer<opt::AlgBruteForce> solver(opt::StopCriteria{}
|
|
.max_iterations(max_tries)
|
|
.stop_condition(stopcond),
|
|
gridsize);
|
|
|
|
// We are searching rotations around only two axes x, y. Thus the
|
|
// problem becomes a 2 dimensional optimization task.
|
|
// We can specify the bounds for a dimension in the following way:
|
|
auto bounds = opt::bounds({ {-PI/2, PI/2}, {-PI/2, PI/2} });
|
|
|
|
Benchmark bench;
|
|
|
|
bench.start();
|
|
auto result = solver.to_max().optimize(
|
|
[&mesh, &statusfn] (const XYRotation &rot)
|
|
{
|
|
statusfn();
|
|
return get_model_supportedness(mesh, to_transform3f(rot));
|
|
}, opt::initvals({0., 0.}), bounds);
|
|
bench.stop();
|
|
|
|
rot = result.optimum;
|
|
|
|
std::cout << "Optimum score: " << result.score << std::endl;
|
|
std::cout << "Optimum rotation: " << result.optimum[0] << " " << result.optimum[1] << std::endl;
|
|
std::cout << "Optimization took: " << bench.getElapsedSec() << " seconds" << std::endl;
|
|
|
|
return {rot[0], rot[1]};
|
|
}
|
|
|
|
}} // namespace Slic3r::sla
|